Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Monascus purpureus is an important medicinal and edible microbial resource. To facilitate biological, biochemical, and molecular research on medicinal components of M. purpureus, we investigated the M. purpureus transcriptome by RNA sequencing (RNA-seq). An RNA-seq library was created using RNA extracted from a mixed sample of M. purpureus expressing different levels of monacolin K output. In total 29,713 unigenes were assembled from more than 60 million high-quality short reads. A BLAST search revealed hits for 21,331 unigenes in at least one of the protein or nucleotide databases used in this study. The 22,365 unigenes were categorized into 48 functional groups based on Gene Ontology classification. Owing to the economic and medicinal importance of M. purpureus, most studies on this organism have focused on the pharmacological activity of chemical components and the molecular function of genes involved in their biogenesis. In this study, we performed quantitative real-time PCR to detect the expression of genes related to monacolin K (mokA-mokI) at different phases (2, 5, 8, and 12 days) of M. purpureus M1 and M1-36. Our study found that mokF modulates monacolin K biogenesis in M. purpureus. Nine genes were suggested to be associated with the monacolin K biosynthesis. Studies on these genes could provide useful information on secondary metabolic processes in M. purpureus. These results indicate a detailed resource through genetic engineering of monacolin K biosynthesis in M. purpureus and related species.


Chan Zhang, Jian Liang, Le Yang, Baoguo Sun, Chengtao Wang. De Novo RNA Sequencing and Transcriptome Analysis of Monascus purpureus and Analysis of Key Genes Involved in Monacolin K Biosynthesis. PloS one. 2017;12(1):e0170149

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 28114365

View Full Text