Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The root system is central for plant adaptation to soil heterogeneity and is organized primarily by root branching. To search for compounds that regulate root branching, a forward chemical genetics screen was employed, and 4-methylumbelliferone (4-MU), a coumarin derivative, was found to be a potent regulator of lateral root formation. Exogenous application of 4-MU to Arabidopsis thaliana seeds affected germination and led to reduced primary root growth, the formation of bulbous root hairs, and irregular detached root caps accompanied by reorganization of the actin cytoskeleton in root tips before seedling establishment. Abundant lateral roots formed after exposure to 125 μM 4-MU for 22 days. Molecular, biochemical, and phytochemical approaches were used to determine the effect of 4-MU on root growth and root branching. Arabidopsis seedlings grown in the presence of 4-MU accumulated this compound only in roots, where it was partially transformed by UDP-glycosyltransferases (UGTs) into 4-methylumbelliferyl-β-D-glucoside (4-MU-Glc). The presence of 4-MU-Glc in seedling roots was consistent with the upregulation of several genes that encode UGTs in the roots. This shows that UGTs play an integral role in the detoxification of 4-MU in plants. The increased expression of two auxin efflux facilitator genes (PIN2 and PIN3) in response to 4-MU and the lack of response of the auxin receptor TIR1 and the key auxin biosynthetic gene YUCCA1 suggest that auxin redistribution, rather than auxin biosynthesis, may directly or indirectly mediate 4-MU-induced root branching.


Xiang Li, Margaret Y Gruber, Dwayne D Hegedus, Derek J Lydiate, Ming-Jun Gao. Effects of a coumarin derivative, 4-methylumbelliferone, on seed germination and seedling establishment in Arabidopsis. Journal of chemical ecology. 2011 Aug;37(8):880-90

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 21713565

View Full Text