Clear Search sequence regions


Exercise significantly influences the progression of atherosclerosis. Oxidized LDL (ox-LDL), as a stimulator of oxidative stress, facilitates monocyte-related atherogenesis. This study investigates how exercise intensity impacts ox-LDL-mediated redox status of monocytes. Twenty-five sedentary healthy men exercised mildly, moderately, and heavily (i.e., 40, 60, and 80% maximal oxygen consumption, respectively) on a bicycle ergometer. Reactive oxygen species (ROS) production, cytosolic and mitochondrial superoxide dismutase (c-SOD and m-SOD, respectively) activities, and total and reduced-form gamma-glutamylcysteinyl glycine (t-GSH and r-GSH, respectively) contents in monocytes mediated by ox-LDL were measured. This experiment obtained the following findings: 1) ox-LDL increased monocyte ROS production and was accompanied by decreased c-SOD and m-SOD activities, as well as t-GSH and r-GSH contents, whereas treating monocytes with diphenyleneiodonium (DPI) (a NADPH oxidase inhibitor) or rotenone/2-thenoyltrifluoroacetone (TTFA) (mitochondrial complex I/II inhibitors) hindered ox-LDL-induced monocyte ROS production; 2) production of ROS and reduction of m-SOD activity and r-GSH content in monocyte by ox-LDL were enhanced by heavy exercise and depressed by mild and moderate exercise; and 3) heavy exercise augmented the inhibition of ox-LDL-induced monocyte ROS production by DPI and rotenone/TTFA, whereas these DPI- and rotenone/TTFA-mediated monocyte ROS productions were unchanged in response to mild and moderate exercise. We conclude that heavy exercise increases ox-LDL-induced monocyte ROS production, possibly by decreasing m-SOD activity and r-GSH content in monocytes. However, mild and moderate exercise likely protects individuals against suppression of anti-oxidative capacity of monocyte by ox-LDL.

Citation

Jong-Shyan Wang, Tan Lee, Shu-Er Chow. Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. Journal of applied physiology (Bethesda, Md. : 1985). 2006 Sep;101(3):740-4

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16728523

View Full Text