Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The nucleosome core particle (NCP) is the fundamental building block of chromatin which compacts approximately 146 bp of DNA around a core histone protein octamer. The effects of NCP packaging on long-range DNA charge transport reactions have not been adequately assessed to date. Here we study DNA hole transport reactions in a 157 bp DNA duplex (AQ-157TG) incorporating multiple repeats of the DNA TG-motif, a strong NCP positioning sequence and a covalently attached Anthraquinone photooxidant. Following a thorough biophysical characterization of the structure of AQ-157TG NCPs by Exonuclease III and hydroxyl radical footprinting, we compared the dynamics of DNA charge transport in ultraviolet-irradiated free and NCP-incorporated AQ-157TG. Compaction into a NCP changes the charge transport dynamics in AQ-157TG drastically. Not only is the overall yield of oxidative lesions decreased in the NCPs, but the preferred sites of oxidative damage change as well. This NCP-dependent attenuation of DNA charge transport is attributed to DNA-protein interactions involving the folded histone core since removal of the histone tails did not perturb the charge transport dynamics in AQ-157TG NCPs.

Citation

Chad C Bjorklund, William B Davis. Attenuation of DNA charge transport by compaction into a nucleosome core particle. Nucleic acids research. 2006;34(6):1836-46

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 16595797

View Full Text