Clear Search sequence regions

Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins. Similar to ASF/SF2-like genes in other organisms, the maize pre-mRNA messages are alternatively spliced. They are differentially expressed in maize tissues with relatively uniform levels of zmSRp30 and zmSRp31 messages being observed throughout the plant, while zmSRp32 messages preferentially accumulated in the meristematic regions. Overexpression of zmSRp32 in maize cells leads to the enhanced selection of weak 5' intron splice sites during the processing of pre-mRNA molecules. Overexpression of the zmSRp31 or zmSRp32 gene affects regulation of wheat dwarf virus rep gene pre-mRNA splicing, presumably by interacting with the weak 5' splice site, CCGU. Our results suggest that the described genes are functional homologues of the human ASF/SF2 alternative splicing factor and they indicate a diversity of the ASF/SF2-like alternative splicing factors in monocot plant cells.


Huirong Gao, William J Gordon-Kamm, L Alexander Lyznik. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced. Gene. 2004 Sep 15;339:25-37

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 15363843

View Full Text